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Abstract

An account-based central bank digital currency has the potential to replace

demand-deposits in private banks. In that case, the central bank invests in

the real economy and takes over the role of maturity transformation to allow

risk-sharing among depositors. Its function as intermediary exposes the CB to

demand-liquidity or 'spending' shocks by its depositors. Since demand-deposit

contracts are nominal, high aggregate spending not necessarily demands excessive

liquidation of real investment by the central bank. A run on a central bank can

therefore manifest itself either as a standard run characterized by excessive real

asset liquidation (rationing) or as a run on the price level where a small supply of

real goods meets a high demand. The central bank thus trades o� price stability

against the excessive liquidation of real goods.
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1 Introduction

Many central banks and policy-making institutions, such as the IMF, the BIS, the

Sveriges Riksbank, and the Bank of Canada, are openly debating the introduction of

a central bank digital currency (CBDC). See, respectively, Lagarde (2018), Auer and

Böhme (2020), Ingves (2018), and Davoodalhosseini et al. (2020).1

The introduction and adoption of CBDCs have the potential to be a watershed

for the monetary and �nancial systems of advanced economies. Since at least the

classic formulation of Bagehot (1873), central banks have viewed their primary tasks

as maintaining stable prices as well as maintaining �nancial stability as lender of last

resort. With a CBDC, two additional and signi�cant aspects come into play. First,

a CBDC easily allows the opening of retail deposits in central banks to all private

households and �rms. Second, with a CBDC, central banks are in the position to lend

directly to the real economy without relying on private �nancial intermediaries.2

In this paper, we seek to model the interplay of these roles and to evaluate the

advantages and drawbacks of introducing a CBDC concerning the subsequent reorga-

nization of the banking system and its consequences for monetary policy, allocations,

and welfare.

In particular, we are keenly interested in understanding how �nancial intermedi-

ation will be a�ected by the presence of a CBDC. To do so, we will build on the

tradition of the Diamond and Dybvig (1983) model, the most popular framework in

the economics of banking. Such a model emphasizes the role of banks in maturity

transformation: banks �nance long term projects with demand deposits, which may

be withdrawn at a short horizon to meet liquidity shocks. Banks, therefore, allow so-

ciety to achieve allocations that are otherwise not attainable under autarky. Can this

maturity transformation still occur at the socially-optimal level with a CBDC? Can a

central bank do better, for instance, by avoiding runs?

1Notice that, in this paper, we use the term CBDC to denote an account-based electronic currency
in the sense of Barrdear and Kumhof (2016) and Bordo and Levin (2017). This linguistic convention
has been adopted by a broad spectrum of monetary economists and policymakers. Other forms of
central bank-issued electronic money, such as a token-based central bank cryptocurrency or traditional
electronic reserves, beget many questions of interest, but most of them are not within the scope of our
current investigation. We will analyze, nevertheless, a simple extension of our model with token-based
and synthetic CBDCs and argue that most our results carry over to these two alternative cases.

2While both deposits and lending to the public at large by a central bank can be accomplished
without a CBDC (as it often happened in the past; see Fernández-Villaverde et al., 2020a, for historical
examples), the operational logistics without digital means become too cumbersome in a modern, large
economy. Also, from the perspective of our paper, it is mainly irrelevant whether the deposits and
loans in the CBDC are run directly by the central bank or by �nancial institutions that just implement
the directives of the central bank.
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We will depart from the original formulation of the Diamond and Dybvig model

in a crucial aspect. While Diamond and Dybvig consider intermediation with private

banks, a CBDC implies central bank intermediation. This di�erence is consequential

because a central bank can control the price level. For example, a central bank can issue

additional units of the CBDC to cover losses in its loan portfolio, implicitly di�using

the costs of the credit losses among all holders of currency.

More concretely, while classic bank runs occur due to a rationing problem (liqui-

dation of illiquid assets) at a given price level, the central bank does not necessarily

incur rationing. Instead, since contracts are nominal, the monetary authority can avoid

excess liquidation of real assets by sacri�cing in�ation targeting. Thus, a run on the

central bank can manifest itself in two ways, either as a classic run, caused by rationing

of real assets, or as a run on the price level.

To allow for this feedback mechanism between the loan portfolio and the price level,

we modify the basic Diamond and Dybvig (1983) model, where all contracts are real,

by considering nominal contracts.3 To do so, we assume that real goods can only be

traded against money, in particular, the CBDC, and that the agents in the economy

hold accounts with CBDC balances at the central bank. This is an implicit form of a

cash-in-advance constraint built on the tradition of Svensson (1983) and Lucas Jr and

Stokey (1985), but suited to the digital world. In fact, a cash-in-advance constraint is

more relevant in a CBDC world because other means of payment, such as the transfer

of private deposits, might have disappeared.

As in Diamond and Dybvig (1983), we have three time periods (0, 1, and 2). In

the economy, there exists a simple, real short-run storage technology and a real long-

term investment technology that can be liquidated early, but at a penalty. Agents are

symmetric in t = 0. In t = 1, the agents learn whether they prefer to consume in period

one (impatient agents) or rather consume in period two (patient ones). The agent's

type is, however, private information and neither observable by other agents nor the

central bank. Diamond and Dybvig show, that in such a setting, real demand-deposit

contracts o�ered by an intermediary allow the agents to share the risk of becoming

impatient.

In our model, this role as the intermediary is played the central bank that o�ers

demand-deposit contracts to the agents. But these contracts are nominal. Unlike

3In Fernández-Villaverde et al. (2020a), we study a real version of the model. In particular, we
show a simple equivalence result between �nancial intermediation through private banks and �nancial
intermediation through a central bank using a CBDC and under which conditions such equivalence
result collapses. Throughout the paper, we will highlight the places where dealing with a real model
makes a di�erence with respect to our baseline results.
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private banks, the central bank can manipulate the price level, by this a�ecting the real

allocation of the agents and thus incentives to spend CBDC or not. The manipulation

of the price level occurs through the market clearing of the real goods market. At time

zero, the central bank collects the agents real goods endowment and invests it in the

real long-term technology, o�ering nominal CBDC balances (money issuance rule) in

return. At the interim period, agents need to decide whether to spend their nominal

balances or not. Agents decide to spend if their expected real consumption at the

interim period exceeds the real consumption of the following period, in anticipation of

the central bank's policy that follows. After the aggregate nominal spending decision of

the agents has realized, the central bank picks a policy consisting of a liquidation policy

(i.e., the percentage of real long-run projects liquidated in the second period) and a

nominal interest rate policy the central bank o�ers on the non-spent CBDC balances.

The interim supply of real goods, determined by the central bank's liquidation policy,

together with the aggregate spending behavior and the money issuance rule pin down

the interim price level. In particular, the central bank does not incur a real rationing

problem as private banks do, since the central bank does not take as given the price

level. Rather, the central bank trades o� the rationing of goods with price stability.

The interim liquidation policy further a�ects the supply of real goods in the following

period. The agents spending strategy needs to be optimal given their belief about the

central bank policy and the evolution of the price level.

Our main result is the existence of central bank runs (either exhaustive or partial)

if the belief of the agents on the central bank policy implies that the expected real

consumption in the �rst period exceeds consumption in the second period (where the

run is exhaustive if the inequality is strict and partial if it is weak).

But what do we mean by a central bank run? Cannot the central bank issue as

much CBDC as needed to service all its depositors? We will discuss how a run on

the central bank has much in common with a traditional bank run in terms of its real

consequences (i.e., the impact on long-term projects). Since those real consequences

for allocations are the ultimate objects of interest, the label run on the central bank is

surely appropriate.

Given our main result, we can show that the central bank can implement the

socially-optimal amount of maturity transformation by picking an appropriate policy.

In particular, to deter patient agents from spending and thus triggering a run, the

central bank can threaten the agents to implement a liquidation policy that makes

spending non-optimal ex-post by increasing the price level. In other words: if the

central bank can credibly threaten the patient agents by setting such a liquidation

3



policy, the central bank deters them from spending, by this preventing a central bank

run equilibrium. Therefore, the central bank can implement a unique equilibrium,

where only impatient agents spend, all patient agents roll over, and the social optimum

is achieved.4

Interestingly, the implementation of a run-deterring policy is only possible because

the contracts between the central bank and the agents are nominal. Since the central

bank does not (have to) take the price level as given, liquidation of the real technology

is at its discretion. If contracts were real, the claims of the agents in terms of the

consumption are �xed already at time zero, by this implying a unique liquidation

policy. Similarly, if we were to have nominal contracts, but now between a private

bank and depositors, the private bank would need to take the price level as given, by

this, again, pinning down the liquidation policy.

Next, we show the conditions that the central bank liquidation policy must satisfy

to achieve price target and price stability (which, at this moment, we can consider as

part of an exogenously given mandate). Given our intuition two paragraphs above, our

next result should not be a surprise. If the central bank commits itself to a price target,

the socially optimal allocation cannot be implemented. Although in this equilibrium

central bank runs are also avoided, forcing the central bank to meet a price target for

all realizations of beliefs of the agents exhausts the liquidation possibilities available to

a central bank and precludes the right amount of investment in the long-run project.

We will discuss, nevertheless, weaker versions of price stability and how those more

relaxed mandates may deliver socially-optimal allocations.

Finally, we derive some results when we allow for the suspension of spending, token-

based and synthetic CBDCs, and the presence of traditional cash.

The rest of the paper is organized as follows. Section 2 reviews the related liter-

ature. Section 3 introduces our model. Section 4 presents the main analysis of the

model, de�nes an equilibrium, and describes some its fundamental properties. Section

5 discusses how the social optimum can be implemented. Section 6 deals with price

stability and how it relates with the implementation of the social optimum. Section 7

reviews several extensions of our basic model, including alternative forms of a CBDC

and cash. Section 8 concludes.

4At �rst sight, this policy of the central bank might seem similar to the classic suspension-of-
convertibility, which is known to exclude bank runs in the Diamond-Dybvig environment. There is
a subtle, but important di�erence, however. Suspension of convertibility there requires the bank to
stop paying customers who arrive after some fraction of withdrawers appear. Here, however, there
is no suspension of accounts. Instead, the price level adjusts to reduce the amount of goods traded
against the digital currency, and the central bank generates enough incentives for patient agents to
wait. There is, nevertheless, a concern regarding time inconsistency to which we will return later.
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2 Related literature

Our paper contributes to a growing literature on the macroeconomic implications of

a CBDC. Brunnermeier and Niepelt (2019) derive an equivalence result of allocations

when introducing a CBDC where the central bank redeposits CBDC funds in the pri-

vate banks (pass through). Florian and Gersbach (2019) on the other hand considers

competition between private deposits and CBDC and shows that the introduction of a

CBDC transfers default risk to the central bank. Skeie (2019) analyzes in�ation-driven

digital currency runs in a nominal model where a private digital currency competes

with a CBDC. Unlike Florian and Gersbach (2019) and Skeie (2019), we disregard

potential competition between a CBDC and deposits at private banks, as, for instance,

also analyzed in Fernández-Villaverde et al. (2020b). Instead, this paper builds on

the Diamond and Dybvig (1983) model and stresses the central bank's role of liquid-

ity transformation when issuing a CBDC to allow agents the sharing of idiosyncratic

liquidity risk.

Unlike Brunnermeier and Niepelt (2019), we are more explicit on the micro incen-

tives of agents to run on the central bank. Unlike, Diamond and Dybvig (1983) and

Fernández-Villaverde et al. (2020b) who consider real contracts, we consider nominal

contracts between the agents and the central bank such that the price level becomes

a crucial additional degree of freedom to the central bank. Similar to Allen and Gale

(1998) and Skeie (2008), large withdrawals of nominal deposits can lead to an increase

in the price level, by this reducing the real allocation and deterring runs. Unlike Skeie

(2008), here, the intermediary is the central bank who can decide how much real in-

vestment to liquidate, by this controlling the goods supply and thus indirectly the

price level, thus, counteracting the aggregate spending behavior of the agents when

desired. Unlike Allen and Gale (1998), here, the central bank has full control over the

real goods supply in t = 1 and t = 2. The central bank can potentially liquidate all or

no assets early by this shifting the t = 2 supply of goods from zero to the maximum,

thus, redistributing the goods supply across the agent groups of early and late spending

depositors.

Second, we have many points of contact with Keister and Sanches (2019), who

explore how the presence of a CBDC a�ects the liquidity premium on bank deposits

and, through it, investment. Related ideas are also explored by Böser and Gersbach

(2019). Our paper distinguishes itself from Brunnermeier and Niepelt (2019), Keister

and Sanches (2019), and Böser and Gersbach (2019) by also discussing allocations

under banking panics.
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3 Our basic framework

Our framework builds on the classical Diamond-Dybvig model of banking. Time is

discrete with three periods t = 0, 1, 2. There is a [0, 1]-continuum of agents, each en-

dowed with one unit of the consumption good in period t = 0. Agents are symmetric

in the initial period, but can be of two types in period 1, referred to as patients and

impatiens. The agent's type is randomly drawn at the beginning of period 1 and it

is private information. Let λ ∈ (0, 1) denote the fraction of impatient agents, those

who value consumption in period 1. In contrast, patient agents value consumption in

period t = 2. Preferences are represented by a strictly increasing, strictly concave, and

continuously di�erentiable utility function u(·) ∈ R. We further assume a relative risk

aversion, −x · u′′(x)/u′(x) > 1, for all consumption levels x.

Investment. There exists a long-term production technology in the economy. For

each unit of the good invested in t = 0, the technology yields either one unit at t = 1

or R > 1 units at t = 2. Additionally, there is a storage technology between periods 1

and 2, yielding one unit of the good in t = 2 for each unit invested in t = 1. All agents

can access both technologies.

E�cient Allocation. Let x1 ∈ R+ denote the impatient agent's consumption,

and let x2 ∈ R+ denote the patient agent's consumption. The e�cient allocation

maximizes social welfare λu (x1) + (1− λ)u (x2) subject to λx1 ≤ y and (1− λ)x2 ≤
R (1− y) + y− λx1, where y ∈ [0, 1] is the liquidation amount in t = 1. There exists a

unique solution given by:

u′ (x∗1) = Ru′ (x∗2) ,

together with x∗1 =
y∗

λ
and x∗2 =

R(1−y∗)
1−λ . Diamond and Dybvig (1983) have shown that

x∗1 < x∗2 holds at the optimum and that a demand deposit contract can implement the

e�cient allocation. However, a demand deposit contract can also induce a a bank-run

equilibrium. This outcome, by forcing the liquidation of the long-term investment, is

clearly ine�cient.

A key feature of analysis in Diamond and Dybvig (1983) is the use of a �real�

demand deposit contract (i.e., a contract that promises to pay out goods in future

periods). Our main contribution in this paper is to show that a nominal contract can

lead to the unique implementation of the e�cient allocation.

6



4 A nominal economy

We now consider an economy with a social planner that uses nominal contracts to

implement the e�cient allocation. The planner o�ers contracts in a unit of account for

which it is the sole issuer. Because central banks have a monopoly on currency, the

planner in our analysis can be understood as the central bank.

Nominal Contracts. All contracts are issued in a unit of account for which the

central bank has a monopoly. Agents who sign a contract with the central bank receive

a nominal payment and then trade money balances for goods.5 Speci�cally, the central

bank issues a digital currency referred to as a CBDC, which takes the form of accounts

at the central bank. We refer to the unit of account as digital euros. Agents can spend

digital euros on their accounts by transferring them to other agents in exchange for

good.

Like physical euros, agents cannot hold negative amounts of digital euros. Indeed,

in this environment, borrowing cash does not imply holding negative amounts of cash.

Instead, it just means that the agent has to pay back cash at some future point, i.e, it

is the debtor on a credit relation. We will discuss the distinction between this account-

based system of CBDC and a token-based system as well as physical cash later in the

paper.

Timing. The sequence of events unfolds as follows. At the beginning of the initial

period, the central bank creates an account for each agent in the economy. More

precisely, each agent starts at date 0 with a zero balance CBDC account. Then, the

central bank agrees to deposit one unit of the good in exchange for M > 0 units of

digital euros, to be credited to that agent's account. Next, the central bank decides

the amount of goods to be invested in the long-term technology.

In period 1, agents learn their type and decide whether to spend their CBDC

balances, that is, either to withdraw or to roll them over. The central bank contract

imposes that an agent either withdraws all its balances or no balance at all. This

restriction simpli�es the analysis by allowing us to avoid having to consider the same

agents withdrawing in two periods.

Because types are unobservable, the central bank cannot deny withdrawal for a

patient agent who wishes to exercise that option. Let n ∈ [0, 1] denote the fraction of

agents who decide to withdraw in t = 1. The central bank observes n and decides the

5For reference, we provide the classic real solution in the technical appendix ??.
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fraction y = y(n) of goods to be liquidated, selling that amount in the market at the

unit price P1. The central bank then chooses a nominal interest rate i = i(n) to be

paid in period 2 on the remaining CBDC balances (i.e., each digital euro held at the

end of t = 1 turns into 1 + i(n) digital euros at the beginning of t = 2). Note that

i(n) ≥ −1, given that agents cannot hold negative amounts of digital euros.

In period 2, the remaining depositors each have (1 + i)M digital euros. Here, we

are implicitly assuming that some spending agents do not, in turn, sell their acquired

goods to other spending agents. Agents withdraw from the central bank and use these

nominal balances to buy goods in the market at a price P2. The central bank then

supplies R [1− y (n)] units in exchange for money balances. Figure 1 summarizes this

timing.

t0 t1 t2

-1

nominal
CBDC 
balances

real storage

M

1

real           
investment
(aggregate)

deposit 
in CB

M M(1+i)

M/P1

not spend

M(1+i)/P2

M/P1

spend 
CBDC
earlyreal

CBDC value
(individual)

1

1 (1-y)R

y ε (0,1)real           
supply
(aggregate)

(1-y)R

real           
supply
(individual)

y /n (1-y)R/(1-n)

real
liquidation 

remaining
investment
matures 

measure
'n' agents
spend 
CBDC
early

Figure 1: Nominal and real investment and contracts
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Central Bank Policy. A central bank policy can be de�ned by a triple (M, y(·), i(·)),
where y : [0, 1]→ [0, 1] is the central bank's liquidation policy and i : [0, 1]→ [−1,∞)

is the interest rate policy.

Market Clearing. In periods 1 and 2, agents withdrawing from the bank exchange

their money balances for goods in a Walrasian market. The market-clearing conditions

are given by:

nM = P1y(n) (1)

(1− n)(1 + i(n))M = P2R(1− y(n)), (2)

which take the form of the quantity theory equation in each period. Given n and

the central bank's policy, these conditions determine the price level, P1 = P1(n) and

P2 = P2(n), in each period:

P1(n) =
nM

y(n)
(3)

P2(n) =
(1− n)(1 + i(n))M

R(1− y(n))
(4)

The central bank chooses the initial money supply before learning the number of

withdrawals in the intermediate period. However, the central bank controls the goods

supply in the Walrasian market, which can be made conditional on the number of

withdrawals. As a result, the central bank can control the price level in period 1. The

interest payments on CBDC balances held until the �nal period allow the central bank

to control the price level in period 2 independently of the price level set in period 1.

It is worth highlighting that the fact that the central bank has a monopoly on the

unit of account in the economy allows it to control the price level. If the intermediary

were a commercial bank, for instance, it would need to take the price level as given, by

this having no choice on the fraction of assets to liquidate in the interim period, which

could give rise to a rationing problem. Because the intermediary is the central bank

with a monopoly on the unit of account used in the contracts, the liquidation policy is

�exible.

Implied Real Contract. The budget constraint for an impatient agent is:

x1 =
M

P1

,
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and the budget constraint for a patient agent is

x2 =
(1 + i (n))M

P2

.

The fraction of early withdrawals n and the liquidation policy y (n) jointly determine

the allocation of goods via the market-clearing conditions:

x1(n) =
y(n)

n
(5)

x2(n) =
1− y(n)
1− n

R (6)

Because each agent withdrawing in the same period has the same nominal income,

the liquidation amount y(n) is equally distributed across all spending agents in period

1, and the amount R(1 − y(n)) is equally distributed across all spending agents in

period 2.6

To summarize the analysis so far: in the initial period, the central bank o�ers a

nominal contract (M,M(1 + i(n))) in exchange for one unit of the good. If the con-

sumer accepts the contract, the central bank has the option to withdraw either M

digital euros in period 1 or M(1 + i(n)) digital euros in period 2. The consumer's

budget contraints then imply (x1, x2) = (M
P1
, M(1+i(n))

P2
). Finally, the central bank's pol-

icy, together with the market-clearing conditions, results in the consumption amounts

(x1(n), x2(n)) =
(
y(n)
n
, 1−y(n)

1−n R
)
.

Equilibrium. We are now ready to de�ne a perfect Bayes Nash equilibrium, our

equilibrium concept for our economy.

An equilibrium consists of an initial money supply M , a liquidation policy y :

[0, 1] → [0, 1], a nominal interest rate policy i : [0, 1] → [−1,∞), aggregate spending

behavior n ∈ [0, 1], and price levels (P1, P2) such that:

1. The consumer's deposit and withdrawal decisions are optimal, given the cen-

tral bank's policy (M, y(·), i(·)), the price level sequence (P1, P2), and its beliefs

regarding other agents' behavior.

2. The price level clears the goods market in each period;

3. The central bank policy is optimal, given the depositors' spending behavior n.

6These equations remain intuitive, even if y(n) = 0 or y(n) = 1. We therefore assume them to
hold then as well, despite one of the price levels being ill-de�ned or in�nite.
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Runs on the central bank. The �rst important property of the equilibrium

de�ned above is that a nominal contract, per se, does not rule out the possibility of a

run on the central bank.

De�nition 1. A run on the central bank occurs if n > λ. The run on the central

bank is called exhaustive if n = 1.

In a bank run, the central bank obviously is not running out of the item that it

has promised to agents and that it can produce freely (i.e., it is not running out of

digital money). This distinguishes it from the bank run equilibrium in Diamond and

Dybvig (1983), in which a commercial bank prematurely liquidates all its assets to

satisfy the demand for withdrawals in period 1, ultimately running out of resources. If

n > λ, the central bank is confronted with a run on deposits. As we will see, the real

consequences of a run on the central bank with nominal contracts can be similar to its

counterpart in the model with real contracts. However, we shall demonstrate that the

central bank's ability to avert a run is necessarily tied to its monopoly on currency and

the implementation of a nominal contract.

Note that impatient agents will spend their entire balances in period 1, given that

they have no use for the consumption good in period 2.7 Patient agents will choose

to prematurely withdraw their CBDC balances only if they believe the central bank

policy implies x1 > x2 (this is the sense in which we can call this choice a �run�). In

that case, patient agents will use the storage technology to consume x1 in period 2.

Otherwise, patient agents will �nd it optimal to wait until the �nal period. These

decisions depend on the central bank's choices only through the liquidation policy y(·)
and not through the nominal elements M and i(n).

The aggregate spending fraction n has to be consistent with these choices in equi-

librium. These considerations immediately imply the following proposition.

Proposition 2. Given the central bank policy (M, y(·), i(·)),

1. n = λ is an equilibrium only if x1(λ) ≤ x2(λ). Then, P1 and P2 are uniquely

determined by (3) and (4).

2. A central bank run n = 1 is an equilibrium if and only if x1(1) ≥ x2(1).

3. Only some patient agents withdraw λ < n < 1 in equilibrium (i.e., there is a

partial run on the central bank) if and only if x1(n) = x2(n).

7In case that y(n) = 0, impatient agents are indi�erent between spending and not-spending. To
break ties, we assume that they spend their CBDC balances in t = 1.
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This proposition fully characterizes the range of equilibria, given the central bank

policy. But, can this policy achieve a �rst-best allocation? The next section shows

that, indeed, it can.

5 Implementation of the social optimum

In our model, the implementation of the social planning optimum is of particular

interest to the central bank. Given the preferences and technology that we postulated

above, only the real allocation of goods to the two types of agents matter, and there

is no additional motive for the monetary authority to keep prices stable.

However, focusing only on real allocations is a narrow perspective. There is a vast

literature arguing in favor of central banks keeping prices stable or setting a goal of low

and stable in�ation for reasons that are absent from our model. For instance, stable

prices minimize the misallocations created nominal rigidities as in Woodford (2003).

And having to hold cash to accomplish transactions, such in models of cash-in-advance

or money-in-utility, create a whole range of distortions that can be minimized by a

deft management of the price level (think about the logic behind the Friedman rule).

Rather than extending the model to include these considerations, which will complicate

the analysis for an uncertain bene�t, we shall proceed by discussing, as we introduce

our results, the tradeo�s between achieving the optimal real allocation of consumption

and the implications of such an e�ort for the stability of prices.

Given that all agents behave according to their type, n = λ, a liquidation policy

y∗ = y∗(λ) maximizes ex-ante welfare:

W = λu(x1) + (1− λ)u(x2) (7)

subject to (5) and (6).

The interior �rs-order condition for the this problem implies:

u′(x∗1) = Ru′(x∗2), (8)

where x∗1 = y∗/λ and x∗2 = R(1 − y∗)/(1 − λ). Given our assumptions on the utility

function, equation (8) uniquely pins down y∗, which is the familiar condition arising

from the optimal deposit contract in Diamond and Dybvig (1983). Together with

R > 1 and the concavity of the utility function, equation (8) also implies that the

12



consumption of patient agents is higher than the consumption of impatient ones:

x∗1 < x∗2. (9)

Moreover, the depositors' relative risk-aversion exceeding unity and the resource

constraint yields:

R(1− λx∗1) = (1− λ)x∗2. (10)

Equations (5), (6), (8), and (10) give us x∗1 > 1 and x∗2 < R.

Finally, at the socially optimal allocation, we have a liquidation policy y∗(λ) =

x∗1λ > λ, resulting in the inequality P ∗1 < M via equation (3).8 These results con�rm

our assertion at the start of this section that the social optimum is independent of price

level stability.

Combining the previous derivation with proposition 2, we arrive at the main result

of the paper.

Proposition 3. The central bank policy (M, y(·), i(·)) implements the social optimum

(x∗1, x
∗
2) in equilibrium if the central bank:

i) Sets y(λ) = y∗ > λ for any n ≤ λ.

ii) Sets a liquidation policy that implies x1(n) < x2(n) for all n > λ.

To understand this result, note �rst that the real allocation to agents and, thus,

their incentives to spend or not depends on the central bank policy (M, y(·), i(·)) only
through the liquidation policy y(·). Given that only impatient agents are spending

(i.e., n = λ), then a policy choice with y(λ) = y∗ for λ ∈ (0, 1) implements the socially

optimum. That is, there is a multiplicity of monetary policies that implement the

�rst-best since the pair (M, i(·)) is not uniquely pinned down. While the pair (M, i(·))
does not a�ect the depositors' incentives, it has an impact on prices via (3) and (4).

Second, since the central bank observes aggregate spending behavior n before it

liquidates assets, it is not committed to liquidating y∗ if it observes that some patient

agents are also spending. To deter patient agents from spending, the central bank

can threaten the agents to implement a liquidation policy y(·) that makes spending

8Following the proof in Diamond and Dybvig (1983),

Ru′(R) = u′(1) +

∫ R

1

∂

∂x
(x · u′(x)) dx = u′(1) +

∫ R

1

(x · u′′(x) + u′(x)) dx < u′(1) (11)

by −x · u′′(x)/u′(x) > 1 for all x.
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non-optimal ex post so that x1 (n) < x2 (n) for n ∈ (λ, 1]. If the monetary authority

can credibly threaten patient agents by setting such a liquidation policy, it deters them

from spending, ending an equilibrium central bank run. Therefore, there is a unique

equilibrium, where only impatient agents spend, all patient agents roll over, and the

social optimum is always implemented.

De�nition 4. We call a liquidation policy y(·) �run-deterring� if it satis�es

yd(n) <
nR

1 + n(R− 1)
, for all n ∈ (λ, 1] (12)

Such a liquidation policy implies that �roll over� is ex post optimal x1(n) < x2(n) even

though patient agents are withdrawing n ∈ (λ, 1].

The implementation of a run-deterring policy is only possible since the contracts

between the central bank and the agents are nominal. Since the central bank does

not have to take the price level as given, the liquidation of investments in the real

technology is at its discretion. In the case of real contracts between a private bank

and depositors, such as in Diamond and Dybvig (1983), the real claims of the agents

are �xed already in t = 0, by this implying a liquidation policy for the very amount

of aggregate spending n. In the case of nominal contracts between a private bank and

depositors, the private bank has to take the price level as given, by this, again, pinning

down the liquidation policy.

Corollary 5. Every policy choice (M, y(·), i(·)), n ∈ [0, 1] with y(λ) = y∗ and

yd(n) <
nR

1 + n(R− 1)
, for all n ∈ (λ, 1], (13)

deters central bank runs and implements the socially optimum in the unique equilib-

rium. Such a deterring policy choice requires the interim price level P1(n) to exceed

the withdrawal dependent bound:

P1(n) >
M

R
(1 + n(R− 1)), for all n ∈ (λ, 1]. (14)

The key to Corollary 5 is the timing of events. The central bank observes the

depositors' aggregate spending behavior n and only then decides on the overall liqui-

dation y(n). If spending exceeded the measure of impatient agents n > λ, the central

bank disciplines spending depositors by liquidating very little, thus, reducing the real

allocation x1. The agents anticipate the punishment by the central bank ex-ante and
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behave according to their type, by this deterring spending over the measure of impa-

tient agents.

Observe that yd(n) is increasing in n, which implies that the constant liquidation

policy

y(n) ≡ y∗ (15)

implements the socially optimal equilibrium as the unique equilibrium. However, there

exist other liquidation policies that can accomplish the same result. The policy (15)

delivers the same result that the classic suspension-of-convertibility option, which is

known to exclude bank runs in the Diamond-Dybvig world.

There is a subtle but essential di�erence, however, between suspension and our

liquidation policy. Suspension of convertibility there requires the bank to stop paying

customers that arrive after the fraction λ of withdrawers. One can argue that this is

not in the spirit of a demand deposit contract. By contrast, in our environment, there

is no restriction on agents ever to spend their digital euros in period 1, and there is

no suspension of accounts. Instead, it is the amount of goods traded against those

digital euros and the resulting change in the price level that generates the incentives

for patient agents to rather wait.

More concretely, a low liquidation implies that the price level P1 is pushed above

an upper bound that is increasing in the aggregate spending.9 Note, however, in

equilibrium, the low liquidation policy deters large spending, such that the high price

level (14) is a threat that realizes only o�-equilibrium.

But, as every time we have an o�-equilibrium threat, we should worry about the

possibility of time inconsistency. In our model, we assume that the central bank can

proceed with such a threat. But, what if the central bank is concerned with price

stability and, therefore, refuses to induce a high price level? Notice that, in comparison

with the classical treatment of time inconsistency in Kydland and Prescott (1977), the

concern here is not that the central bank will be tempted to in�ate too much, but

that it would be tempted to in�ate too little. The central bank can avoid suboptimal

allocations by committing to letting in�ation grows if needed.

A similar concern appears in models with a zero lower bound on nominal interest

rates: a central bank wants to commit to keeping interest rates su�ciently low for

su�ciently long (even after the economy is out of recession!) to get the economy out

9Our result resembles Theorem 4 in Allen and Gale (1998) and has a similar intuition. In Allen
and Gale (1998), a central bank lends to a representative bank an interest-free line of credit to dilute
the claims of the early consumers so that they bear a share of the low returns to the risky asset. In
their environment, private bank runs are required to achieve the �rst-best risk allocation.
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of the zero lower bound. However, once the economy is out of the zero lower bound,

there is an incentive to renegade from the commitment to lower interest rates and

avoid an increase in the price level. See, for an early formulation of this argument,

Krugman (1998). This concern about time consistency suggests that we must come

back to explore the implications of our model for the evolution of the price level.

6 The classic policy goal: Price level targeting

As we discuss before, there are many possible reasons to explain why central banks

view the stabilization of price levels (or, more generally, in�ation rates) as one of their

prime objectives. The model here should be viewed as part of a larger macroeconomic

environment, where price stability must be taken into account. The task at hand,

then, is to examine how the liquidation policy derived in the previous section and the

price stability impose constraints on each other. In particular, we will document the

existence of deep tensions between the objective of achieving the �rst best from the

perspective of deterring a central bank run and the goal of price stability.

We shall distinguish two versions of the objective of price stability, as the period-1

objective might potentially be at odds with long-term price stability: full price stability

and partial price stability. Let us start analyzing the former.

6.1 Full price stability

De�nition 6. i) A central bank policy is P1-stable at level P , if it achieves

P1(n) ≡ P for the price level target P , at all spending fractions n ∈ [λ, 1].

ii) A central bank policy is price-stable at level P , if it achieves P1(n) = P2(n) ≡
P for the price level target P , for all spending fractions n ∈ [λ, 1].

In our de�nition, price stability here is treated as a mandate even for o�-equilibrium

realizations of n. The best way to read this is a matter of commitment to the price

level P , no matter what happens, i.e., even if more than the expected equilibrium

fraction of agents chooses to spend their balances in period t = 1. From (3), we can

state the following proposition relating the liquidation policy of the central bank and

the price-level outcome.

Proposition 7. A central bank policy is:
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i) P1-stable at level P , if and only if its liquidation policy satis�es:

y(n) =
M

P
n, for all n ∈ [0, 1] (16)

implying a real interim allocation:

x1(n) ≡ x1 =
M

P
≤ 1. (17)

ii) A central bank policy is price-stable, if and only if its liquidation policy satis�es

equation (16) and its interest policy satis�es:

i(n) =
P
M
− n

1− n
R− 1 (18)

and

P ≥M. (19)

Note that a price stable liquidation policy (16) requires asset liquidation in constant

proportion to aggregate spending for all n ∈ [0, 1]. Such a policy excludes rationing or

all kinds of suspension policies.

To understand the previous results, equation (16) implies that x1(n) is constant at

some level x. Since the central bank cannot liquidate more than the entire investment in

the real technology, y(n) ≤ 1, it follows that x = x1(1) = y(1) ≤ 1, i.e., equation (17).

Equation (18) follows from (4) combined with (16). Equation (17) or, alternatively,

the constraint i(n) ≥ −1 for all n ∈ [λ, 1] implies (19). Recall from section 5, that the

socially optimal allocation satis�es x∗1 > 1. Therefore, we can infer state a detailed

corollary showing the limitations that price stability imposes on the implementation of

the social optimum.

Corollary 8. If the central bank commits to a P1-stable policy, then:

i) The socially optimal allocation is not implemented.

ii) There is a unique equilibrium where only impatient agents spend, n∗ = λ, i.e.

there are no central bank run equilibria.

iii) If the central bank commits to a price-stable central bank policy, then the nominal

interest rate is non-negative i(n) ≥ 0 for all n ∈ [λ, 1]. The interest rate i(n) is

increasing in n.
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On item (ii) of our previous corollary, a P1-stable policy deters central bank runs

since equations (16) and (17) together with equations (5) and (6) imply:

x2(n) =
1− nx
1− n

R ≥ R > 1 ≥ x (20)

Therefore, patient agents will never choose to spend in period 1. To see item (iii),

equation (19) implies i(n) ≥ 0 for all n ∈ [λ, 1], since R > 1. With equation (19),

equation (18) implies that i(n) is increasing in n.

6.2 Partial price stability

While price stability and the absence of central bank runs may be desirable, the con-

straint (17), i.e., the failure to implement the socially optimal real allocation is not.

In particular, the implementation of the social optimum is at odds with the goal of

complete price stability. Recall that optimal risk-sharing at x∗1 > 1 is the trigger of

potential bank runs in models of the Diamond-Dybvig variety: thus part (ii) of the

proposition above should not surprise.

Demanding price stability for all possible spending realizations of n is thus too

stringent, when x1(λ) > 1: for su�ciently high spending levels of n, equation (16)

exhausts the liquidation possibilities available to a central bank, as y(n) can impossibly

exceed unity. We therefore examine a somewhat more modest goal: a central bank may

still wish to assure price stability, if it is possible at all, but may deviate from its goal

in times of crises. We capture this with the following de�nition.

De�nition 9. 1. A central bank policy is partially P1-stable at level P , if either

it achieves P1(n) = P for some price level target P , or the central bank fully

liquidates real investment y(n) = 1, at all spending fractions n ∈ [λ, 1].

2. A central bank policy is partially price-stable at level P , if either it achieves

P1(n) = P2(n) = P for some price level target P , or the central bank fully

liquidates real investment y(n) = 1, for all spending fractions n ∈ [λ, 1].

Obviously, P1-stable central bank policies are also partially P1-stable, and price-

stable central bank policies are also partially price-stable.

Proposition 10. Suppose that M > P ≥ λM .

1. A central bank policy is partially P1-stable at level P , if and only if its liquidation

policy satis�es:

y(n) = min

{
M

P
n, 1

}
(21)
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2. Consider a partially P1-stable central bank policy at level P . De�ne the critical

aggregate spending level :

nc ≡
P

M
(22)

For all n ≤ nc, the price level is stable at P1(n) = P and the real goods purchased

per agent in period t = 1 equal :

x1(n) = x1 =
M

P
> 1 (23)

While real goods purchased per agent in period t = 2 equal x2(n) = R(1−x1n)/(1−
n). For aggregate spending in excess of the critical level, n > nc, the real goods

purchased per agent in period t = 1 equal x1(n) = 1/n at a price level P1(n)

proportionally increasing with total spending n,

P1(n) =Mn (24)

while x2(n) = 0 for n > nc.

3. Any partially P1-stable central bank policy with M > P allows an exhaustive run

on the central bank to occur in equilibrium.

4. A central bank policy is partially price-stable at P , if and only if its liquidation

policy satis�es equation (16) and its interest policy satis�es:

i(n) =
P
M
− n

1− n
R− 1, for all n ≤ nc (25)

For n > nc, there is no supply of real goods in t = 2. Thus, P2 and i(n) are

irrelevant then.

5. Suppose the central bank policy is partially price-stable at P . The nominal interest

rate turns negative for n ∈ (n0, nc), where n0 =
R P

M
−1

R−1 = Rnc−1
R−1 . For R < M/P ,

the nominal interest rate is negative for all n ∈ [0, nc).

Proposition 10, (2) re�ects the central bank's capacity to keep the price level and

the real interim allocation x1 stable as long as spending remains below the critical

level nc. The stabilization of the price level requires liquidation of real investment

proportionally to aggregate spending by factor M/P . Since the central bank cannot

liquidate more than its entire investment, as spending exceeds the critical level nc,

price level stabilization via liquidation of real assets becomes impossible. Rationing of

19



real goods implies that the price level has to rise and the real allocation declines in

aggregate spending.

Proof. 1. Equation (21) follows immediately from (3) and the constraint y(n) ≤ 1.

2. Equation (21) implies that x1(n) = y(n)/n is constant at the level x =M/P , as

long as y(n) < 1: this is the case for n < nc. For n ≥ nc, y(n) ≡ 1. All goods

are liquidated, so x1(n) = 1/n. Equation (24) follows from equation (3).

3. This is a consequence of proposition 2 and since for n = 1 > nc, x2(1) < x1(1).

4. Equation (25) follows from (4) combined with (21).

5. This is straightforward, when plugging in (21) into P2(n) and observing that n0

is positive only for R > M/P .

Proposition 10 is in marked contrast to Proposition 7. One could argue that when

banking is interesting, i.e. x1 > 1 for n = λ, then the goal of price stability induces

the possibility of runs on the central bank, the necessity for negative nominal interest

rates, and the abolishment of the price stability goal, if the run is too large.

7 Extensions

In this section we introduce several extensions of interest to our basic model. In order,

we will stidy the case where we allow for the suspension of spending, token-based

CBDCs, synthetic CBDCs and retail banking, and cash.

7.1 Allowing for suspension of spending

With an account-based CBDC, there is an additional and rather drastic policy tool at

the disposal of the central bank: the central bank can simply disallow agents to spend

(i.e., transfer to others) more than a certain amount on their account. In other words,

the bank can impose a �corralito� and suspend spending. This policy is di�erent from

the standard suspension of liquidation, as the amounts of goods to-be-made available

on the goods market is a policy-induced choice that still exists separately from the

suspension of spending policy. Notice also that �suspension of spending� should perhaps

not be called �suspension of withdrawal.� Since there are only CBDC accounts and
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they cannot be converted into something else: the amounts can only be transferred to

another account.

With the suspension of spending policy, the central bank could arrange matters in

such a way, that not more than the initially intended amount of money will be spent

in period 1. In practice, the central bank would then either take all spending requests

at once and, if the total spending requests exceeds the overall threshold, impose a

pro-rata spending limit, or it could arrange and work through the spending requests

in some sequence, thereby possibly imposing di�erent limits depending on the position

of a request in that queue. Needless to say, such a spending suspension might create

considerable havoc and erode trust in the central bank digital currency system: these

issues are outside the model considered here.

7.2 Token-based CBDC

In a token-based CBDC, a central bank issues anonymous electronic tokens to agents in

period 1, rather than accounts.10 These electronic tokens are more akin to traditional

banknotes than to deposit accounts.

Interestingly, the analysis in the previous sections still holds, since nothing of essence

depended on the concrete details of operating under a deposit-based CBDC. With a

token-based CBDC, agents obtain M tokens in period t = 0, and decide how much to

spend in periods t = 1 and t = 2.

With digital tokens, it is easy for a central bank to pay a nominal interest in period

t = 2: even a negative nominal interest rate is possible. Technically, digital tokens can

be designed in such a way that each unit of a token in t = 1 turns into a quantity 1+ i

of tokens in t = 2, with i to be determined by the central bank at the beginning of

period t = 2. This is a simple task that software code can easily accomplish.11

In the analysis above, the identity of the agents holding the CBDC accounts did

not matter much. Thus, the same allocations can be implemented except for those

that require suspension of spending, as discussed in Subsection 7.1. For the latter,

10This can be done with or without relying on a blockchain. In the second case, a centralized ledger
to record transactions can be kept by a third-party that is separated from the central bank. That
third-party could also potentially pay interest or how to impose a suspension of spending. For the
purpose of this paper we do not need to worry about the operational details of such a third-party or
to specify which walls should exist between it and the central bank to guarantee the anonymity of
tokens.

11Historically, we have examples of banknotes bearing positive (for instance, during the U.S. Civil
War, the U.S. Treasury issued notes with coupons that could be clipped at regular intervals) and
negative interests (demurrage-charged currency, such as the prosperity certi�cates in Alberta, Canada,
during 1936). Thus, an interest-bearing electronic token is only novel in its incarnation, but not in its
essence.
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the degree of implementability depends on technical details outside the scope of this

paper. Note that even with a token-based system, the transfer of tokens usually needs

to be registered somewhere, e.g., on a blockchain. It is technically feasible to limit the

total quantity of tokens that can be transferred on-chain in any given period. A pro-

rata arrangement can be imposed by taking all the pending transactions waiting to be

encoded in the blockchain, take the sum of all the spending requests, and accordingly

divide each token into a portion that can indeed be transferred and a portion that

cannot. It may be that o�-chain solutions arise circumventing some of these measures,

but their availability depends on the precise technical protocol of the CBDC token-

based system. In the case where the token-based CBDC is operated by a centralized

third-party, such an implementation is even easier.

7.3 Synthetic CBDC and retail banking

With a synthetic CBDC, agents do not hold central bank digital money directly.

Rather, all agents hold accounts at their own retail bank, which in turn holds a CBDC

not much di�erent from current central bank reserves. The retail banks undertake the

real investments envisioned for the central bank in our analysis above.

The key di�erence to the actual system of cash-and-deposit-banking system is that

cash does not exist as a separate central bank currency or means of payments. That

is, in a synthetic CBDC system, agents can transfer amounts from one account to

another, but these transactions are always observable to the banking system and,

thereby, the central bank. Likewise, agents (and banks) cannot circumvent negative

nominal interest while they could do so in a classic cash-and-deposit-banking system

by withdrawing cash and storing it.

For the purpose of our analysis, observability is key. Our analysis is relevant in case

of a systemic bank run, i.e., if the economy-wide fraction of spending agents exceeds

the equilibrium outcome. Much then depends on the interplay between the central

bank and the system of retail banks. E.g., if liquidation of long-term real projects is

up to the retail banks, and these retail banks decide to make the same quantity of real

goods available in each period, regardless of the nominal spending requests by their

depositors, then the aggregate price level will have to adjust. The central bank may

seek to prevent this either by imposing a suspension of spending at retail banks or by

forcing banks into higher liquidation of real projects: both would require considerable

authority for the central bank.
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7.4 Cash

The key di�erence to a fully cash-based system is that spending decisions can only be

observed on the goods market, rather than by also tracing accounts or transactions

on the block chain. In principle, the payment of nominal interest rates on cash is

feasible, but is demanding in practice. Excluding nominal interest rates on cash, due to

these practical considerations, implies the cash-and-deposit-banking system discussed

in 7.3 and the restrictions discussed there. The tools available to a central bank are

now considerably more limited. These limitations may be a good thing, as they may

impose a commitment technology and may thus lead to the prevention of an equilibrium

systemic bank run in the �rst place, but the restricted tool set may be viewed as a

burden ex post, should such a bank run occur.

8 Conclusion

This paper analyzes implications for price stability and �nancial stability when a central

bank conducts maturity transformation and invests in the real economy.

In its role as intermediary, the central bank collects and invests the real goods

endowments of the agents in a real production technology, o�ering a nominal CBDC

contract in return. The contract speci�es nominal payments conditional on early or

late spending of CBDC balances. At an interim period, the agents learn whether they

enjoy late (patient agent) or early (impatient agent) consumption and then decide

whether to spend their balances. Agents who enjoy late consumption can nevertheless

spend their CBDC account early by investing in a real storage technology. Agents

spend early when the expected real value from early spending exceeds the expected

real value from late spending. But real values depend on the central bank's liquidation

policy of real investment. A central bank run occurs if not only impatient agents but

also patient agents decide to spend their CBDC balances early.

The central bank observes aggregate nominal spending and then decides how much

real investment technology to liquidate, by this determining the real goods supply. The

price level for real goods then adjusts such that the nominal CBDC spending clears

the real goods market. In contrast, a private intermediary would need to take the price

level as given such that the price level jointly with aggregate nominal spending pins

down the necessary liquidation of the technology.

As the main result, we show that the central bank can always implement the socially

optimal allocation in the unique equilibrium and deter the central bank run equilibrium.
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To do so, the central bank needs to deter agents who enjoy late consumption from

spending their CBDC balances early. The monetary authority does so by threatening

to run high price levels given spending is too high, such that spending early was ex

post sub optimal. Ex-ante, depositors anticipate the central bank's behavior, and do

not spend when learning that they are patient, such that in equilibrium the central

bank's threat is never implemented.
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